Induction of osteoclastogenesis and matrix metalloproteinase expression by the lipooligosaccharide of Treponema denticola.
نویسندگان
چکیده
Alveolar bone destruction is a characteristic feature of periodontitis. Treponema denticola is known to be involved in periodontitis. To elucidate the role of T. denticola in alveolar bone destruction in periodontitis, the effects of lipooligosaccharide (LOS) from T. denticola on osteoclast formation and on expression of osteoclast differentiation factor (ODF) and osteoprotegerin (OPG) mRNAs were examined in a coculture system by using mouse calvaria and bone marrow cells. In addition, the effect of T. denticola LOS on expression of matrix metalloproteinases (MMPs), which are involved in bone resorption, was estimated in mouse calvaria-derived osteoblastic cells. When the mouse calvaria and bone marrow cells were challenged with LOS (0.1 to 10 micro g/ml) for 4 days, the number of tartrate-resistant acid phosphatase-positive multinucleated cells increased in a dose-dependent manner. The expression of ODF mRNA increased, while OPG mRNA expression decreased. Polymyxin B changed the effect of LOS (10 micro g/ml) on ODF and OPG mRNA expression to the control level. LOS (10 micro g/ml) stimulated prostaglandin E(2) (PGE(2)) production in the cocultures. Adding indomethacin, an inhibitor of prostaglandin synthesis, resulted in a reduction in the number of osteoclasts induced by LOS and eliminated the effect of T. denticola LOS on ODF and OPG mRNA expression. T. denticola LOS increased the levels of mRNAs encoding MMP-3, -8, -9, -10, -13, and -14. Expression of one of these mRNAs, MMP-9 mRNA, was significantly induced by T. denticola LOS. These findings suggest that LOS from T. denticola stimulates osteoclastogenesis and MMP expression. Up-regulation of ODF and down-regulation of OPG by a PGE(2)-dependent mechanism were involved in the osteoclastogenesis induced by T. denticola LOS.
منابع مشابه
Binding properties of Treponema denticola lipooligosaccharide
BACKGROUND AND OBJECTIVE The cell-surface lipooligosaccharide (LOS) of Treponema denticola possesses several biological properties. The aim of this study was to investigate the binding properties of T. denticola LOS to extracellular matrix (ECM) proteins, mucosal cells, and oral bacteria. DESIGN LOS was isolated from T. denticola and labeled with tritium. Tritium-labeled LOS was placed in ECM...
متن کاملActivation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola.
We have recently demonstrated that the periodontopathogenic oral spirochete Treponema denticola possesses membrane-associated lipoproteins in addition to lipooligosaccharide (LOS). The aim of the present study was to test the potential of these oral spirochetal components to induce the production of inflammatory mediators by human macrophages, which in turn may stimulate tissue breakdown as obs...
متن کاملHighly conserved surface proteins of oral spirochetes as adhesins and potent inducers of proinflammatory and osteoclastogenic factors.
Oral spirochetes include enormously heterogeneous Treponema species, and some have been implicated in the etiology of periodontitis. In this study, we characterized highly conserved surface proteins in four representative oral spirochetes (Treponema denticola, T. lecithinolyticum, T. maltophilum, and T. socranskii subsp. socranskii) that are homologs of T. pallidum Tp92, with opsonophagocytic p...
متن کاملThe Treponema denticola chymotrypsin-like protease dentilisin induces matrix metalloproteinase-2-dependent fibronectin fragmentation in periodontal ligament cells.
Periodontal disease is a bacterially mediated chronic inflammatory disease that results in destruction of the periodontal ligament (PDL) and alveolar bone that surround and support the dentition. While their precise roles are not well understood, periodontal pathogens, including Treponema denticola, are believed to initiate the destructive inflammatory responses and dysregulation of tissue home...
متن کاملEffect of Foretinib on Matrix Metalloproteinase-2 (MMP2) Expression in Glioblastoma
Background: The most malignant form of infiltrating astrocytoma, glioblastoma multiforme (GBM), is one of the most aggressive human cancers. Foretinib diminished GBM cell invasion by downregulating the expression of matrix metalloproteinase 2 (MMP2). The study aimed to examine the anti-tumor activity of foretinib and to test its effect on MMP2 expression in T98 cells. Materials and methods: T9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 71 1 شماره
صفحات -
تاریخ انتشار 2003